Weak Comparison Principle for Weighted Fractional p -Laplacian Equation
نویسندگان
چکیده
منابع مشابه
A STRONG COMPARISON PRINCIPLE FOR THE p-LAPLACIAN
We consider weak solutions of the differential inequality of pLaplacian type −∆pu− f(u) ≤ −∆pv − f(v) such that u ≤ v on a smooth bounded domain in RN and either u or v is a weak solution of the corresponding Dirichlet problem with zero boundary condition. Assuming that u < v on the boundary of the domain we prove that u < v, and assuming that u ≡ v ≡ 0 on the boundary of the domain we prove u ...
متن کاملTwo generalized Lyapunov-type inequalities for a fractional p-Laplacian equation with fractional boundary conditions
In this paper, we investigate the existence of positive solutions for the boundary value problem of nonlinear fractional differential equation with mixed fractional derivatives and p-Laplacian operator. Then we establish two smart generalizations of Lyapunov-type inequalities. Some applications are given to demonstrate the effectiveness of the new results.
متن کاملThe Kirchhoff Equation for the P – Laplacian
wt t (t, x)− K (‖wx (t, ·)‖ β Lr (R))a(wx (t, x))wxx (t, x) = 0, (2) w(0, x) = 8(x), wt (0, x) = 9(x), where K is an arbitrary function, sufficiently smooth and taking only positive values; and a = a(s) behaves like |s|p−2 near s = 0. The detailed assumptions on K , r , β, and a are given in (3), (4) and Condition 1 below. For K = K (s) = c1 + c2s (c1, c2 > 0) and p = r = β = 2, we get the famo...
متن کاملPositive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation with p-Laplacian Operator
We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operatorD 0 φp D α 0 u t f t, u t , D 0 u t 0, 0 < t < 1, u 0 u ′ 1 0, u′′ 0 0, D 0 u t |t 0 0, where 0 < γ < 1, 2 < α < 3, 0 < ρ 1, D 0 denotes the Caputo derivative, and f : 0, 1 × 0, ∞ × R → 0, ∞ is continuous function, φp s |s|p−2...
متن کاملGeneralized Antiperiodic Boundary Value Problems for the Fractional Differential Equation with p-Laplacian Operator
Fractional differential equations arise in various areas of science and engineering, such as physics, mechanics, chemistry, and engineering. The fractional order models become more realistic and practical than the classical integer models. Due to their applications, fractional differential equations have gained considerable attentions; one can see [1–14] and references therein. Anti-periodic bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2020
ISSN: 2314-8888,2314-8896
DOI: 10.1155/2020/6675031